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Abstract 

A state  estimator design is presented for a Mars rover 
prototype.  Odometry  estimates are obtained by  utiliz- 
ing the f u l l  kinematics of the vehicle including the non- 
linear internal  kinematics of the rover rocker-bogey 
mechanism as well as the contact  kinematics between 
the wheels and the ground. Additional sewing using 
gyroscopes, acclerometers and  visual sensors allows for 
robust rover  motion  state  estimation.  Simulation M 

well as experimental results are presented to  illustrate 
the estimator  opemtion. 

1 Introduction 

Future  space missions to Mars include science rovers 
in '03 and '05 and other rovers in support of Mars 
Outpost  activities in the following decades. Unlike 
the Sojourner rover on the  recent  Pathfinder mission, 
a long-range rover will traverse many kilometers away 
from a lander. Such a rover  will not be able to rely on 
navigation methods based upon images obtained by 
the lander stereoscopic cameras. While some position 
estimation will be possible using intermittent inter- 
action with orbital assets, and lander/rover deployed 
GPS-type pseudo-lites may be available at some sites, 
a robust state estimation framework relying on on- 
board sensors is important for  mission success. 
In this paper we focus  on non-visual methods of state 
estimation. Such methods are  important in their own 
right since they serve as backup to vision-based meth- 
ods in regions of  low visual content.  They also al- 
low visual feature tracking and range map match- 
ing methods to be  more robust  to failure, reduce 
search/computation costs, and minimize the number 
of imaging related mast deployment operations. 
The paper describes a method to improve the precision 
of the  odometry  estimate by using the full kinematics 
of  the rocker/bogey mechanisms of the rover as it tra- 
verses undulating/bumpy  terrain. This is considerably 
more  complex than a kinematically simpler vehicle o p  

erating on a flat indoor environment. The Kalman 
filtering framework adopted also provides a natural 
Bayesian means of combining any visually based  mo- 
tion estimates  into the full state estimate. 

1.1 Rocky-7 Research Platform 

Many of the future Mars rovers are planned to have 
an articulated rocker-bogey suspensions mechanism, 
&wheel driving, and 2-6 wheel steering. A research 
prototype vehicle with some of these characteristics is 
the Rocky-7 rover research platform (191 shown in Fig- 
ure 1. The mobility system consists of 6 drive wheels, 

Figure 1: Rocky-7 Side View 

2 steering wheels, rockers hinged to  the sides of the 
main body connected by a differential, and bogey as- 
semblies at each end of the rocker. Sensors include 
a solar-panel mounted sun-sensor, a vibratory head- 
ing gyro,  and a 3-axis accelerometer. Internal angles 
of the rover  mechanism are read by potentiometers. 
Wheel drive and  steering angles are read by optical 
encoders. The rover is equipped with 7 CCD cam- 
eras, 2 at each end for the hazard avoidance system 
and 3 on the mast (3 for stereo  panaromas,  and 1 for 
close-up viewing). 

1.2 Previous Work 

We briefly tltwribr some: representative related work 
in the  area of  rnobiltx robot state estimation. Since 
Global Positioning System (CPS) based methods are 



not generally applicable to  a vehicle  on Mars, we have 
excluded them from our discussion. 
Beacon-based localization has been considered by 
Leonard [9] in  which an  Extended Kalman Filter 
(EKF) is  employed to match environment observations 
to a map. Matthies (121 used a Kalman Filtering ap- 
proach to  track stereo vision features  and  obtain ve- 
hicle motion. Baumgartner  and Skaar [2] estimate a 
vehicle’s position and orientation based  on visual cues 
in discrete locations within a structured environment. 
Olson [15] utilizes range map matching to periodically 
localize a mobile vehicle. 
Borenstein and Feng [3] develop a technique where 
gyro data is only used  when the gyro and odometry 

inertial sensors in an  EKF  to estimate position. Va- 
ganay and Aldon [18] utilize accelerometers and gyros 
for  vehicle attitude estimation. Fuke and Krotkov [6] 
utilize gyros and accelerometers together with odom- 
etry  to  estimate vehicle attitude.  The combination of 
gyro and sun-sensor data for  vehicle attitude estima- 
tion is addressed by Roumeliotis and Bekey [16]. 
Kinematic techniques include an effort by Kim,  et.al 
[8] to extend a dead-reckoning formula for a two- 
wheeled robot on a known curved surface. Slip mod- 
eling for a vehicle operating in the plane is considered 
by Madhavan, et.  al [ll] where a random walk  model 
for a slip angle parameter is used  for estimating the 
motion of a truck with planar  articulation elements. 

I estimates differ. Barshan and Durrant-Whyte [l] use 
I 

2 Rover Model 

Here we discuss the model  used for rover state estima- 
tion. This consists of a state-space model to propa- 
gate rover position and  attitude, a kinematic contact 
model to describe wheel interactions with the ground, 
and measurement models for the sensors. 

2.1 Coordinate Frames  and  Variables 

Coordinate frames and variables are as defined  in  Fig- 
ure 2. The unconstrained rover’s  degrees-of-freedom 
(dof’s) are seen to be three  translational,  three  rota- 
tional, three  internal (~o ,y1 ,72) ,  two steering ( X I ,  &),  
and six drive ($1, . . . , $ 6 ) .  Contact  at each  wheel  con- 
strains these dof’s to two translational dof’s (x,y)  and 
one angular dof (heading) when the rover  is  in full 
contact with the ground. 

Figure 2: Rocky-7 Kinematics 

2.2 Process Model 

The process model  may be chosen so that  the sensor 
data is  used as an  input to drive the process equa- 
tion. Alternatively, dynamic models for the process 
can be introduced, and the sensor information can be 
captured by a separate measurement equation. 
Treating the sensor data as inputs  obviates the need to 
introduce higher order states into the process model. 
It avoids the difficulty of modeling detailed process 
dynamics and allows the filter to be responsive to high- 
frequency motions without excessive  low-pass filtering. 
The so-called complementary property of such filters 
is further discussed in Appendix A. 
In cases where there is  insufficient sensor data  to drive 
all the  terms in the process equation, we adopt a hy- 
brid approach. The available data is used to drive part 
of the  state equation, and a process model with simple 
dynamics is  used for the  rest. Such an approach is  ne- 
cessitated in the case of the  attitude evolution model 
for those rovers that implement only a heading gyro 
(such its Rocky-7). 

2.2.1 Atti tude State Model 

Here we adopt a hybrid form combining both a head- 
ing gyro measurement and a simple noise driven pro- 
cess dynamics. 

All angular variables are resolved in body coordinate 
with q E R4 being the  attitude unit  quaternion. The 
total body angular velocity w is the sum of three  terms 

2 



w = w,  + wp + 6 ,  with wm,wp, b E R3. The w, is 
the measured gyro value and will be non-zero only 
for the z-axis component of the body angular velocity. 
The wp then represents a perturbation  angular velocity 
which  is driven by an angular acceleration noise n,. 
As we are measuring the z-axis angular velocity, the 
corresponding noise term is taken  to be small. The 
b represents the gyro bias. The terms in quaternion 
evolution equation are: 

Small Angle  Evolution 
We define an intermediate local model to which the. 
standard continuous-discrete Extended  Kalman Fil- 
ter (EKF) equations can be applied [7]. Because the 
normalization constraint qTq = 1 is not explicitly en- 
forced in the estimator design, the quaternion q acts 
as an over-parameterized representation of the baxis 
attitude. In order to avoid the redundant state, a 
local vector angular variable 8 E R3 is  defined  by a l e  
cal linearization at the beginning of each propagation 
step. After the completion of the corresponding u p  
date  step,  the local angular variable is absorbed  into 
the quaternion from the previous linearization. The 
process is continued with subsequent linearizations. 
The corresponding covariance terms  are  maintained in 
terms of the local angular variable, which character- 
izes a ball of uncertainty  about the  attitude estimate. 
The linearized equation for 8 becomes [17]: 

e = w - - w x e  (3) 

Note that this  parameterization is linear in 8 but pre- 
serves the nonlinear dependence of w for this accuracy 
in 8.  This is a locally valid nonlinear system which  re- 
mains to be further linearized in the usual EKF sense. 

1 
2 

\ 

2.2.2 Translation State Model 

Here the  data from a 3-axis accelerometer is  used to 
drive the process. 

The translational position zz E R3, of the rover frame 
is  resolved  in the inertial frame. However, the velocity 
u E R3 is  resolved  in the body frame. The  matrix R(q) 
is the  rotation  matrix of the rover attitude as a func- 
tion of q ,  the  attitude quaternion. The accelerometer 
frame is assumed to be aligned with the rover frame. 
The term Lb is the vector from the rover frame to  the 
accelerometer frame origin. 

2.2.3 Contact  State  Model 

[ i ] = [ A E E l + [ " c l  (5) 

The  contact point vector E = {(I, 1 2 ,  <a, &I, 6 ,  <a} is 
modeled  very simply as a set of one parameter con- 
tacts  about  the  equator of each wheel, with the nom- 
inal contact position & = 0. In reality there is an ad- 
ditional off-equatorial coordinate for the contact point 
at each  wheel, a contact  rotation angle, and two  pa- 
rameters that describe the point on the ground [13]. 
However the one parameter model  suffices to capture 
and couple the  rotational  and  translational velocities. 
We can also reduce the number of contact state vari- 
ables to four by noting that for terrain with moderate 
curvature the contact  points on each wheel of a bogey 
set  are almost symmetrical and can be modeled with 
a single contact state.  The dynamics encoded in At 
is  used to return  the contact point eventually to  the 
nominal position. This ensures correct  steady-state 
behavior when travelling on flat surfaces. 

2.2.4 Gyro Bias 

The gyro bias can be modeled as a random walk and 
successive measurement of all three attitude compo- 
nents by an absolute sensor would  allow this bias to 
be estimated while the rover is in motion. However, 
since the Mars rover operations call for the rover to 
periodically come to a stop (every few meters), bias 
can be simply estimated by averaging the gyro data 
during these times when the rover  is stopped. There- 
fore we choose to not incorporate a gyro bias process 
model into the  state estimator. 

2.3 Measurement Model 

As we have already absorbed the gyro and acceleration 
measurements into the process model, here we discuss 
only the  other sensor quantities such as the sun-sensor. 
We also address the nonlinear kinematics by means 
of slip related constraint that we treat in a manner 
similar to  that of a measurement. 

2.3.1 Sun-Sensor  Model 

The sun-sensor design is a wide-angle  lens  which 
projects an image of the sky on a two-dimensional  po- 
sition sensing device [5]. The  output currents of this 
device,  specifically the  ratio of currents for  each  di- 
mension, provides the position of the centroid, s,, of 
the  Sun's image  from the edge of the device. 

3 



from the rover frame to  the contact  point. The sun-sensor has optics most easily described by a 
fish-eye  lens model. In the sun-sensor frame, the sun 
azimuth angle is  given by atan(s,(2), -s,(l)), and el- 
evation by n/2(1- J s , ( ~ ) ~  + ~ ~ ( 2 ) ~ ) .  Equivalently, 
the  output of the sensor can be expressed in terms of 
of the two independent components of the sun  unit 
vector resolved in the sun-sensor frame: 

The unit vector s,, represents the sun-vector in iner- 
tial  coordinates.  This vector is rotated  into  the sun- 
sensor coordinate system (which  is taken to be  the 
rover frame) by the  matrix R(q) E R3x3 correspond- 
ing to  the quaternion q. The noise term ns lumps the 
effects of electronics noise as well as calibration errors. 

2.3.2 Kinematic Slip Model 

There is no simple analytical formulation of the inverse 
kinematics map that relates wheel rotations and con- 
tact interactions to  the vehicle motion. Such a map 
must necessarily involve the dynamics of the vehicle 
and is too complicated for implementation in the fil- 
ter. Instead we choose to embed the easily established 
forward kinematics within a constraint that is treated 
as a measurement in the filter. We shall see that this 
allows a natural implementation of the full kinematics 
of the vehicle. It exploits the ability of the Kalman fil- 
ter  to perform the  appropriate least-squares averaging 
of the action of each kinematic chain in the rover. 
Each such forward kinematic chain has a component 
defined by sequence of links joining the rover frame 
to each wheel contact  point, and a component given 
by the slip between the wheel and  the  ground. We 
introduce the notion of a slip measurement or  con- 
straint, tmi ,  that defines the relative 6-dof motion of 
the contact frame I f ,  (see Figure 2) on the wheel with 
respect to  the ground.  This slip is a function of the 
vehicle configuration, the 6-dof  vehicle  velocity, the 
wheel-to-ground contact point location, and  the joint 
rates associated with the kinematic chain emanating 

([ ] Jifi (7, X) [ I )  + [ nti ] (8) 

The Ad;' term is the Adjoint Operator I141 given  by: 

The  term galli  represents the transformation from the 
rover frame to  the contact point. The  term J:fi rep- 
resents the  Spatial Jacobian [14] to each wheel center 
and is a function of the kinematics of the rover. 
Here the internal angles are represented by 7 ,  the 
steering angles by X, the drive angles by $, and the 
contact point by &. The terms Ad;' is a function 
of 7, X, and E .  However, it is not a function of the 
driving angles $ because of rotational symmetry of 
the wheel. The  term J:fi is also not a function of the 
driving angles + and is  only a function of 7 and X. 
A variety of choices are possible  for the B matrices. 
We adopt  the B matrix for pure rolling: 

0 1 0 0  
1 0 0 0  

B = [ i  i ; ; ]  
This slip constraint measurement can be decomposed 

into a known deterministic component and a compo- 
nent that is  only  known  in a statistical sense. The de- 
terministic component of the slip, indicated by a non- 
zero nominal value oft,, is used to capture  the effects 
of a known steering action. For example, a known ro- 
tational slip about  the vertical is  always present at 
each  wheel to accommodate the yaw motion of the 
vehicle during a turn. Also,  some transverse slip is 
introduced due to  the nature of the non-steered bo- 
gey  wheels  on a rover  like  Rocky-7. In this case, the 
bogey  wheels  have their  rotation axis on two parallel 
lines longitudinally (x) offset  from each other. As a 
consequence there is  always  some transverse slip even 
during an Ackerman based steering turn unless one 
is  going on a  straight line on flat terrain. These de- 
terministic slips are easy to calculate for  Ackerman 
steered motions on flat ground and  are used a s  approx- 
imations to  the  true deterministic slip even during mo- 
tion  over  non-flat terrain. Another deterministic slip 
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constraint measurement can be derived from experi- 
ments. For example, over sandy  terrain, a known rate 
of experimentally derived longitudinal (x) slip during 
traverses can be added as a non-zero t ,  term. 
A slip action that is  only  modeled statistically is due to 
the wheel-ground interaction at  each individual wheel. 
Consider the case when each wheel  is driven by a 
control algorithm that  attempts  to maximize  compli- 
ance of the wheel-ground rolling interaction, and also 
maximally coordinates  the  control effort across all the 
wheels. Then the slips at each wheel  in the longitu- 
dinal (x) rolling direction are mostly independent of 
each other. Now consider a rover in which each wheel 
is independently driven by a high-gain, “stiff” control 

point established by the controller and does not ac- 
commodate to any wheel-ground  forces of interaction. 
The slips at each wheel are  thus strongly correlated. 
Another statistically modeled slip action is due to  the 
terrain  curvature. As the vehicle  makes progress on 
the  terrain,  the rocker-bogey mechanism mostly ac- 
commodates the vehicle to maintain  contact over the 
terrain  and a highly compliant wheel controller can 
zero out any rolling slip. However, there is usually 
some inevitable transverse slip at each wheel to ac- 
commodate the curvature changes of the surface at  
each wheel contact. This slip can be modeled as a 
zero-mean process with time  constants  and dynamics 
related to  the  rate of change of surface curvature pa- 
rameters along the rover path. 
In actual  practice, the slip at the wheel is a combina- 
tion of all of the above processes. We choose not to 
model  all the statistically describable noise terms in 
all of their complexity. Instead we select a simple un- 
correlated slip model for our early implementations, 
with the covariance strengths determined by experi- 
ments. There may also be opportunities to develop a 
true slip related measurement using the motor current 
data on the drive motors. 

i algorithm. Then each wheel rotates  to follow the set- 

3 Experiments 

Test data is obtained from  Rocky-7 operated in the 
JPL Mars Yard, a 15 X 25 meter outdoor test  area  that 
closely simulates Mars-like terrain. Another source is 
a high-fidelity kinematic simulator of the rover contact 
kinematics [20]. This  simulator solves for the contact 
configuration for a set of closely spaced points along a 
specified  rover path.  It then uses the  contact geometry 
and surface parameters of the wheel and ground to 
derive wheel motion. As such the results correspond 

to  the case of highly compliant control at each  wheel 
minimizing slip in the rolling direction. 
In  all  cases the slip measurement/constraint knowl- 
edge made available to  the estimator is taken to be 
nominally zero for the translational motions. In case 
of turning motions, a non-zero slip value  is calculated 
for the bogey  wheels based upon the nominal steer- 
ing rate. Of course, the  statistical models of the slip 
“noise”  allow the  estimator  to optimally utilize (or 
discount) the value of the nominal slip knowledge. 
We report results for two test  setups, with an emphasis 
on showing the  contact point state estimation. 

3.1 Simulated  Data  Results 

Figure 3 shows the rover at the  start of a 1 meter 
straight-line motion over the undulating surface. We 

Figure 3: Simulated Motion On Undulating Terrain 

can compare the performance of the kinematic esti- 
mator with one based upon dead-reckoning. The av- 
eraged wheel odometery  obtained by integrating the 
speed (as indicated at each wheel) results in an esti- 
mate of distance traveled as 1.0204 m, i.e. approxi- 
mately a 2% error over the actual  distance traveled. 
For this straight-line motion one could correct this es- 
timate by using the instantaneous vehicle pitch angle 
to project the wheel-derived traversal speeds prior to 
integration. However, this results in negligible  im- 
provement  since the rocker-bogey mechanism keeps 
the pitch angles  below 0.5 degrees for the entire du- 
ration of the motion. With  the kinematic estimator 
we can correct for the effects  of the nonlinear internal 
kinematics and  the variations in contact angles at all 
of the wheels. The  distance traveled is then  estimated 
to be 1.0036 m indicating a much improved 0.3% error 
over the distance traveled. 
We note that cross-track error reached a maximum of 
14 mm.  This is a result of a one-directional, terrain 
curvature induced transverse slip active for the portion 
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of the motion. Over a larger section of terrain  this slip 
component would average out  to zero resulting in  only 
a small cross-track error on average. 
The  ground-truth  contact  points  and  the  estimated 
values are shown  in Figure 4. We observe that  the 
tracking of the contact points is quite  accurate, al- 
though with some lag. 

-loo 2 1 I 8 10 
- -101 I 

0 1 4 1 8 1 0  
t ,  

Figure 4: Ground-nuth  and  Estimate For Contact 

3.2 Experimental Data Results 

The control algorithm used on the rover consists of 
individual high-gain controllers on each  wheel with no 
wheel coordination. The motion for this  test  set con- 
sists of a straight-line  traverse on flat terrain with a 
single obstacle encountered by the right wheels  (wheels 
4,5,6). The obstacle is successfully traversed with the 
rover coming to rest with a portion of the right bo- 
geys  (wheels 5,6) resting on the obstacle. The obstacle 

pitch-up as the wheels negotiate the obstacle as well 
as a change in the roll angle. Due to  the momentum 
of the rover motion, there is minimal change in the 
rover heading. 
The estimated attitude angles are shown in Figure 5 
where we observe the roll and pitch deflections induced 
by the obstacle. The estimated positions and veloci- 
ties are shown in Figure 6. We see that  that the es- 
timator  has correctly picked up the z-deflection cause 
by the obstacle that results in an increase in vehicle 
height. Estimated  contact states  are shown in Figure 
7. We note that  the contact angle variations are  quite 
large under the right wheels as would be expected by 
the traversal of those wheels  over the obstacle. Since 
the final configuration of the rover  is such that  the 

4 causes two simultaneous effects. It results in a rover 
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Figure 5: Estimate For Attitude 
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Figure 6: Estimate For Position and Velocities 

right-side bogey  wheels are in the middle of traversing 
the obstacle, the corresponding contact points are sig- 
nificantly displaced from  zero at  the end of the motion. 
However, the contact point for the right  front wheel  re- 
turns to near zero as it proceeds on level ground after 
climbing over the obstacle. As expected the wheels 
on the left side of the vehicle experience very little 
change in contact angles. The  estimated position val- 
ues are within 1 cm  of the ground-truth data  and  the 
estimated  contact angles are within 5 degrees. 

4 Conclusions 

By use of the slip-constraint concept, we have incor- 
porated the non-linear kinematics, contact point ge- 
ometry, and slip behavior into  an  Extended Kalman 
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Figure 7: Estimate For Contact Angles 

filtering framework. We have demonstrated improved 
odometery when this kinematic information is used in 
a complementary fashion with other on-board sensors. 
Future work items include: 

Sensor monitoring by means of filter residuals 

Mode switching between different estimator 
banks triggered by changes in observability. 

Incorporating a smoother to post-process the sen- 
sor data every time the rover obtains a precise 
attitude estimate  during  one of its periodic halts. 

Implementing sub-optimal filters with guaranteed 
response times. 
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Appendix  A  Filter Structure 
We consider a simple rover model with just one trans- 
lation degree-of-freedom with process model: 

r e l  r w m + b + n l  1 

where B is a single rotation angle, z is the  translation, 
u is the velocity, b is the bias. The gyro measurement 

wm and  the accelerometer measurement a, enter into 
the process equation. Notice the gravity projection 
term gB that is valid  for small angles 0. The n1, n2, 
723 are  the noise  values. The measurement equation is 
given  by: 

6 + n4 [::I = [ : z : ]  (12) 

Here 6, represents a measurement of the angle, x ,  
represents a measurement of the position, and vm is a 
measurement of translational velocity. The 724, 725, 716 

are  the noise  values. Notice that velocity measurement 
is equivalent to a "slip" measurement in the form of 
w - rt,b where r would be a wheel radius  and t,b would 
be the wheel rotational  rate. 
Consider an observer [lo] for this  system  and the re- 
sulting closed loop transfer function of the observor. 
We only show one of these  transfer functions, namely 
the  term for estimate @s). The  other transfer func- 
tions show a similar complementary structure. 

Here a,b,c,d,e,  and z are polynomials in s with co- 
efficients that  are a function of the observor gains and 
g. The steady state Kalman filter would be obtained 
by selecting optimum values of the gains which then 
would be functions of the noise covariances. We can 
show that  the following properties hold: 

c(s )  + sd(s) + s2e(s) = 0 (14b) 

Rearranging (13) we obtain: 

Each of the  terms represents a weighted measurement 
of B with the weights being the  terms in the square 
brackets. The sum of all the weighting terms adds  to 
1 indicating the complementary nature of the filter. 

7 



References [12] L. Matthies, Dynamic Stereo Vision, Ph.d. The- 
sis. Computer Science Department, Carnegie 

111 B. Barshan,  and H.F. Durrant-Whyte, “Iner- Mellon University, 1987. . .  
tial navigation systems for  mobile robots,” IEEE 
IIFans. on Robot. and Automat., 11 (3), pp. 328- 
242, 1995. 

[13] D.J. Montana, “The Kinematics of Contact  and 
Grasp,” The Int. J .  Robotics Research, 7 (3), pp. 
17-32, 1988. 

[2] E.T.  Baumgartner and S.B. Skaar, “An au- 
tonomous vision-based  mobile robot,” IEEE 
IIFans. on  Automat.  Control, 39(3), pp. 493-502, 
1994. 

[14] R.M. Murray, Z. Li and S.S. Sastry, A  Mathemat- 
ical Introduction to Robotic Manipulation, CRC 
Press, Boca Raton, Florida, 1994. 

[3] J. Borenstein and L.  Feng, “Gyrodometry: A new 
[15] C. Olson, “Mobile Robot Self-Localization by 

method for combining data from gyros and odom- 
Iconic Matching of Range Maps,” Proc. of the 8th 

etry in mobile robots,” Proc. 1996 IEEE  ICRA, 
International Conference on Advanced Robotics, 

pp. 423-428, Minneapolis, 1996. 
pp. 447-452, 1997. 

[16] S. Roumeliotis and  G. Bekey, “An Extended 
[4] R.G. Brown, “Integrated Navigation Systems and Malman Filter for frequent local and infrequent 

Kalman  Filtering”, Journal of The Institute of global sensor data fusion,” Proc.  SPIE - Sen- 
Navigation, 19 (4), Winter 1972-73. sor Fusion and Decentralized Control in  Auton. 

[5] J. Fraden, AIP Handbook of Modem  Sensors: 
Physics,  Designs, and Applications, American In- 
stitute of Physics, New York, 1993. 

[6]  Y.  Fuke and  E. Krotkov, “Dead Reckoning  for 
a Lunar Rover  on  Uneven Terrain,” Proc. 1996 
IEEE  International Conference on  Robot. and 
Automat., pp. 411-416, Minneapolis, Minnesota, 
April 1996. 

[7] A. Gelb, ed., Applied Optimal  Estimation, The 
M.I.T. Press, Cambridge, 1974. 

[8] K.R. Kim, J.C. Lee and J.H. Kim, “Dead- 
reckoning for a Twewheeled Mobile Robot on 
Curved Surfaces,” Proc. 1996  IEEE International 
Conference on Robot. and Automat., pp. 1732- 
1737, Minneapolis, Minnesota, April 1996. 

[9] J.J. Leonard and H.F. Durrant-Whyte, “Mobile 
Robot Localization by Tracking Geometric Bea- 
cons,” IEEE R a m .  on Robot. and Automat., 7 
(3), pp. 376-382,  1991. 

[lo] D. G. Luenberger, “An Introduction to Ob- 
server,” IEEE Trans. Automatic  Control, AC-16 
(6), 1971. 

[ll] R. Madhavan, M.W.M.G. Dissanayake, and H.F. 
Durrannt-Whyte, “ ~ 4 ~ t o n 0 m 0 ~ ~  Underground 
Navigation of an LHD using a Combined ICP- 
EKF Approach,” Proc. 1998 IEEE Int.  Conf.  on 
Robot. and Automat., Leuven, pp. 3703-3708, Bel- 
gium, May 1998. 

Robotic Systems, 3209, pp 11-22, Pittsburgh, 
1997. 

[17] R. E. Scheid, D. S. Bayard. 3 .  Balaram and D. B. 
Gennery, “On-board State Estimation for Plan- 
etary Aerobots,” AIAA Intl. Balloon Technology 
Conf, AIAA 97-1462, June 3-5, 1997, San Fran- 
sisco, USA. 

[18] J. Vaganay and M.J. Aldon, “Attitude Estima- 
tion For A Vehicle  Using Inertial Sensors,” Con- 
trol Eng.  Practice, 2 (2), pp. 281-287, 1994, Else- 
vier. 

[19] E. Volpe, J. Balaram, T. Ohm and R.  Ivlev. 
“Rocky 7: A Next Generation  Mars Rover Pro- 
totype.”  Journal of Advanced Robotics., 11(4), 
December 1997. 

[20] J.  Yen, A. Jain  and J. Balaram, “ROAMS : 
Rover Analysis, Modeling and Simulation Soft- 
ware,” Fijlh International  Symposium  on  Artifi- 
cial Intelligence and Automation an Space, No- 
ordwijk, The Netherlands, 1-3 June 1999. 

8 


